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"1 Introduction
The problem of biserial corrolation arises wnen one is sampling from

a bivariate normal population in which one of the variables has been dicho-
tomized, giving rise to only two observable values, say O and 1, and one

wishes to use this dichotomized sample to estimate, or test hypotheses con-
cerning the correlation coefficient P of the original bivariate normal dis-
tribution. P is sometimes glven the name biserial correlation coefficient.
This name reflects the former confusion between sample statistics and popu-
lation parameters, referring of course to the fact that a sample drawn from
the observable bivariate population just described may be thought of as two

separate series of observations, those in which the dichotomized variable

has the value O and those in which it has the value 1. It is apparent that i
the numbers of observations in the two series are dependent binomial random
variables vhose sum is the sample size,

The term biserial correlation was introduced in 1909 by Karl Pearson
[6], who was the first to perceive the statistical importance of this par- ‘
ticular type of problem. He proposed as an estimator the sample biserial ,
correlation coefficient. The asymptotic variance of this estimator was de-
rived in 1913 by Soper [8]. Since that time, with the exception of certain
references to discriminatory analysis (see [13]), in which the use of the
sample biserial correlation coefficient goes unquestioned, no results of a
mathematical nature were contributed until a recent paper by Marits (5].
Much literature exists, however, on the subject cf how best to compute Pear-
son's coefficient. In this connection the reader should see DuBois [2],
Dunlap (3], and Royer [7].

The problem of biserial correlation occurs quite often in psychological

work, especially in that branch of the subject known as Test Construction ke
T

and Validation. In connection with an objective test one may be interested t“’“

SR

in obtaining a measure of the strength of the relation between the ability “/ -

L




2
to ansver correctly a perticular item in the test and abillty to perform at
som® task, or in testing hypothetes concerning the strength of this relation.
Such a measure, togoth;r vith a random sample of individuals, selected of
course from the population for wkich inferences are to be drawn, helps to
determine whether or not the given item should be included in the test. In
order to put the problem in the proper form certain assunptions must be made. i
Suppose that the ability to answer the test item correctly can be represented
nunerically by a random variable with a normal probability distribution,
which however camnot be observed due to the restrictions of the test; in par-
ticular, suppose that observations on this ability teke the value O if the
question is answered incorrectly, and the value . if the question is answered
correctly. If in addition to the underlying normal distribution just postu-
lated, we assume t.hat.t.he ability to perform at the task 1s also measurable
with a nopnal distribution, and that the two normal variables have correlation
coefficient P, then we have the problem of biserial correlation.l A simple
exanples would occur vhen a true-false question is included among the questions
in a preliminary college aptitude test and them a follow-up study is conducted
on the sampled students in order to observe their final grade point average
upon graduation four years later. In this case (° would represent the degres
of associntion bestween ability to answer the question correctly and ability
in school, and would be estimated by some function of the paired observations -
on the sample students. It should be noted that in such a case acceptable
test items are those for which | £) is judged to be near 1. We shall refe.r
to this example several times in the sequel in order to illustrate certein points.

]'Poarson'a original formulation was less restrictive than that given here.
Anticipating the fact that problems in estimation and testing hypotheses

s,
will require assumptions of normality, we make these assumptiors at the

outset. ﬁ,

A
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In the above example it is assumed that there exisis an underlying ~ P~
distribution of ability to answer the true-ialse question correctly, and
that in addition this distribution is normal., Since it is not possible
to observe the underlying distribution, it also is not possible to test
the assumption of underlying normality, but only that the underlying dis-
tribution is normal given that there is an underlying continuoua distri-
bution. Therefore, in many situations in which biserial correlation is

appealed to, the assumptions involved are open to serious attack, an

attack for which there is no adequate statistical defense.

If one wishes, he may give up the assumption of underlying normality
and assume instead that the observed bivariate distribution is that of a
discrete random variable which takes the wvalues O and 1, and a contimuous
random variable with the property that its conditional distribution be
normal for each given walue of the discrete variuble. With this formu-
lation good results may be obtained if one is willing to make the assump-~
tion that the two normal conditional distributions have the same variance. ;
The problem of estimating or testing hypotheses concerning € under this
sot of conditions is known as the problem of point-biserial correlation
and is treated in reference [10]. Some of the results obtained there are
similar to those of the present paper. Note that this set of conditions
may be tested statistically by testing the normality of the conditional
distributions. Moreover, no confusion between the two model:z would occur,
since in the case of biserial correlation, it is easily shown to be im-
possible for the conditional distributions to be normal. 1n the problem of
estimating the correlation between ability to answer a test item correctly
and ability in school, the use of point~biserial correlation requires that
(1) for each student who answers the test item correctly, the conditional
distribution of his grade-~point average be normal with, say, mean /a:,

e A A ST 5Ly, L [



4
and variance o—?, and that (i1) for each student who answers the test item
incorrectly, the conditionszl distribution of his grade-point average be
normel with mean A, and variance 2. Note that it is necessary for the
variability of grade-point average to be the same for the two groups of
students.

Professor Harold Hotelling realised some years ago that the exiating
methode for dealing with the prosllem of biserial correlation were far from
satisfactory, and suggested to tie author that the whole situation be recon-
sidered. The results of this examination ere conteained in the present paper.

Section 2 contains a list of moat of the notation which has been adopted,
and Section 3 deals with the mathematical model.

In Section 4 the question of maximum likelihood is treated. The
maximum likelihood estimator is shown to be asymptotically normal and
asymptotically efficient. The asymptotic variacces for 6 and o s the
maximum likelihood estimators of the correlation £ and point of dichotomy
w, ars found by the usual methid which employs the information matrix and
side-steps the sclution of the likelihood equations. A valuable contribution
to the theory of biserial correlition was made by Marits [5]. Comments are
made on his work, and on a paper of Tochor[il), in the early part of Section 4.

An evaluation of 1* , the sample biserial correlation coefficient, is
given in detail in Section 5. It is shown that ™ has asymptotic efficiency
for estimating (¢ which is 1 whan P =0, but which approaches ( when Pl
approaches 1. Consistency of r* was shown by Karl Pearson [6]. The well-
known fact that r* may be greater than 1 1s pointed out and some notion of
the magnitude of r* 1is obtainei by a consideration of the product moment
correlation coefficient r. Asyaptotic normality of r® 1a verified by the
use of a theorem of Cramér. The asymptotic standard deviation of r* 1is
tabulated in Table I at the end »f the paper. One interesting point in

P 1 =
+ R
B P i A




Section 5 1s an intuitively appealing fect which the author discovered is
universally assumed, but apparently was never proved: ruauely, thav the
asymptotic varisnce of r* is @ ainimum at w=( for each fixed £ . A

proof is given for this result. For the case w =0 an approximate variance

stabilising transformation is derived. Calculations pertaining to this trans-

formation may be carried out by using Table VB of Fisher (3] for the function
tanh=t (r). This result should prove useful in many situations. Section §
concludes with a discussion of the preceding resultis and of ithe feasibility
of using r" to test the hypothesis H: / =Ffo when (FPol is small.
Section 6 is devoted to a discussion of an iterative method ¢f solution
for the likelih: . wations. Ths method is essentially Newton's method for
two varlables, the c-lculated valaes w', r” being used to start the iter-

ation. The conputstions are not really prohibitive, considsring the import- °

ance of the problem, and are to a cortain extent organizable for punched-
cards methods. A:r sxample is givan with all of the calculstions illustrated.
The data consist of a senple of 2) observations taken from an artificially
constructed bivariaie normal population with /A= ,707.

Values of Mills' ratio ,

2
-F

1 e
f(x) = L2

are required for the calsuiations. For purposes hore we shall nead a table
whi 1 gives ¢ (x) for x ranging from -3 to 43 in steps of .01, mo that
no transformation or extersive irterpolation is required, since it will be
necesgary to obtx . n vilues of @ for a given problem in which a gample of
n has been taksu. Accordingly, we include Table II at the end of the paper.
Interpolation by inspection in Teble II should be quite satisfactory.

The subject of biserial corzelation is generally given a light treat-
ment in texts on psychological statistics, centering on the unboundedness




of r® and the questionable character of the assumption of underlying nor-
mality for the dichotomized variable. A notable exceptlon is the recent book
by Walker and L.v ELZ], vhich has & more complete trestment of the subject.

A few of the results contained 11 the present paper are referred to, and illu~
strated in [12].

2. Notation
To eliminate the distractioa of searching through the text, we shall
list here most of the symbols ani notational devices used.

P(x,y) = 3 o 20— P , the bivariate
2r /1_P2 normal density

£

J_..‘jr" ° 2 | the normal density

A(x)

(-]
) = JAMwat, qx= 1-px.
X

$(x) = M , Mills' ;atio.
p(x)
*»

Fo) = Sptne

Yo = Pane

) ¢ the undichotomised normal random variable.

3 the dichotomised normal randoa variable.

A the point of dichotomy of Y, measured in standard units.

A the discrete raxiom variable induced by the dichotomisation of Y.

t
i
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£(x, %) the joint density of the random variables X and Z.
p(X,1) the corrvelation coefficient of the random variables X and Y.
7 the maximum likelihood estimator of £ .
b o the sample biserial correlation coefficient.
r the ordinary sample correlation coefficient based on the
sample (X,,2,) , 1=1,2,0c0pm.
V(r*iw,f) the asymptotic variance of r¥.
5(1'*!“,{) ' the asymptotic efficiency of 1* for estimating £ .
X (,t,a'z) a normal random variable with mean ¢ and variance 2,

W(,“‘:Vi"zp ©2; f) a bivariate norms’ random vector with means M, ¥,
variances rz, tz, and correlation f£.

U~ (p,e?) uenotes the fact that U 1s asyaptotically normal vith
mean /- and variance -2,

3. Mathematical Model
Let (X,X)=BX (:,75¢2, «2;p), and & be any fixed constant. Now let
Z be a Bernoulli random wvariable defined as follows:

(3.1) 2 =-1 if xi—”;w and Z =0 if .I;_"Z.:wo

Obviously,

o0
Pz=1) = [ A a5 =p9, B(z = 0) = qbo).
@y
>
Consider 2 iample of n independent random vectors (xl,zl), (12,22),... ’
(xn,zn). The problem of biserial correlation consists in finding a anit;ablc

function ot (xi,"; 1= 1,2,...,!1, with which to estimate F .

Karl Pearson [6] introduced the estimator r" ("rige-tal r'), which we .
express in the following forms

e o
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b+ EORED (e

) {%-}': (xi-xizfih(r> A

where is the product moment correlation coefficient of (xi ,Zi), and

T is the solutisn of the equation

(3.3) ﬁx(y)dy =7
T

r® will be discussed completely in Section 5. For the present we shall

merely state the asymptotié variance obtained by Soper [8]:

(3.4) V(r*'a:‘f'%{f"‘*f’z (ns - %‘ﬁ*f\%} ’

vwhere the functicns p, q, and ) all have argument w,

/o™= {n V(r*lw.P}g'

L ]
»

is given in Tat' e I at the end of the paper. In' view of synetry about the
values p=0 aid p() =3, the taulation is given for p= 0 to 1
in the steps of '0, and for p = .05 ta .50 in steps of .05.

Since the random varisble Z takes the value O or i, the joint density
-of (X,2) can be written

(3.5) £(x,8) = s2(x,1) + (1-3)£(x,0),
where ’
wTry w
(3.6) f(x,0)~ fY(x.y)dy. £(x,1) = ['I’(x.y)dy, )
BN . - oo wsry

with ¥ (x,y) denoting the density of 6/(/1,9;92, 7% P)s Sections 4 and 6
are devoted to a discussion of the likelihood function,

(3.7 L = ]-P_T {(1—-,_):(:1,0)‘ *.’ir(*:l’l)} .
i-~1

©

g.“,.

!“




4. Properties of the Maximun Likelihood Egtimators

It may be seen that L is actually independent of ¥ and T, since a
change of variable y' = (y-u)/Z 4n the integrals of f£(x,0) and £(x,1)
removes ¥ and T. Hence, in all further work we shall set ¢ =0 and
T =1,

The main stumbling block is the existence of the nuisance parameters
/4 and g-z. The 4 likelihood equations in the variables «, £, A4, ,2 are not
hard to write down, but the algebraic difficulties involved in the deviation

of asymptotic variances and covariances, and the numerical difficulties
involved in solving the equations by an iterative method, prove far too pro-
hibitive, It seems intuitively clear that were we able to solve the 4 likeli-

hood equations for &, £, 7, 52, we would find that ﬁ - ?(xl,xz,...,xn;

zl,sz,...,sn) is invariant under any transformation of the form x;'= ax;+b.

This, of course, does not give us the right to set A& »0 and a.? =1, and
then expect to find the correct maximum likelihood estimators for « and o—z.
The following course of action has been adopted as a way out:s set /"-’0 and y

°-2 = 1. Then solve the 2 likelihood equations, and in the resulting solution

replace x; by
i (% !)2 %
If we know the values of = and c'?’ the problem is naturally avolded by an ,

immediate transformation of the original data. In all future work we shall
assune « =0 and 0_2, 1. ¥(x,y) now becomes ¥ (x,y), and the likelihood
function takes the form

(4:2) Lwe) = T ] {'1 5(xg,0) + (1-:1)?(::1,(0)}.
i=1
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We shall pause at this point to discuss the work of Maritsz [5). Using
Probit Analysis, together with a result of Tocher [1il, he has given a very
nice approximation scheme for the solution of the likelihocd equations. In
vhat follows we shall give a short outline of his method in terms of the
notation of the present paper.

Let (X,Y)=8X (O,O;l,(l—Pz)'l;P). In view of the fact that the likeli-
hood equations are invariant under a change of ¥ or t <, this formu-
lation is equivalent to ours. Now introduce a grouping of the observations
{xi;i =1,2,...,0} with a set of k cells of equal vidth. Denote this group-
ing by

{1, o =1,2,0005k Jr

Denote the collection of midpoints of these cells by

{35,080 = Li2peenskf

Let

(4.3) Py = PR(xer, ), T  =P2=lx=5§

1ok )

9 S Ik

Novw let Nj,k be the muber of observations in the eampleixi;i = 1,2,...,n}
vwhich fall in Iia"’ and Mj,k be the number among the Nj,k for which
the corresponding Z obssrvation is 1. Thus, {Nj’k;j - 1,2,...,1:} have a
multinomial distribution with parameters Py ;J =1,2,...,k{. The condit~
ional distribution of {My 1;J = 1,2,eec,k} given N, =n, 1s the pro-
duct of k binomial distributions.

(4e4) g_’lnj’k- n, Jf:lrj'kal ,  (x =1,2,...)

Maritz now assumes that the observations {xi; i=1,2,... ,n} are concen-
trated at their rospective cell mid points. Since the marginal distribution
of the Xi is independent of w and f s the part of the likelihood function




1
vwhich depends on £ and <V will be the conditional distribution of the Mj X
given N j ,k” By o vhich has parameters "j ke We are thus ultimately led
A A
to two simultanecus equations for & and P which contain terms
T
am o .
° P
These equations are then transformed slightly and probit analysis is used for
the solution.
Presunably, as the grouping becomes finer, the estimates
A A
w(ml,],’mZ,k""'mk,k) and P (ml,k’mz,k""’mk,k)’ together with the asymp-
totic variances 0‘632 and a'} s WVill approach the correct values for the
original problem., A proof of this result must depend on a close examination
of the limiting processes involved. The situation which arises may be described
as follows. We assume that the grouping becomes finer snd we wish to assert
tw thingss
{‘“’J,k” = 1,2,0..’k}‘—’ {n‘i = P(z = l|l - xi);i - 1,2,...,11} 9
(4.5)

M
{ ].i.l{.;j =1,2,0000k } = {n'“k;,j =1,2,...,k }
»

in the sense of probability.

The meaning of (4.5) is, then, that as k and n both become large the cell widﬁ
must become small, but in such a way that each cell still contains suffici-
ently many observaiions for ":1,1: to be a valid approximation of M ’Jﬂ 5,k°

This result does indeed appear quite plausible, but a detailed proof would be
lengthy.

Instead of attemp*ing a discussion of the above point, we offer an alter-
native derivation of the asymptotic variances of ,9 and tﬂ in this section,
and in Section 6 and iterative scheme for obtaining (£,d) which, while more

time consuming than that of Marits, does mot require any grouping. It should

be noted here that Tocher's exact method (pp. 9-11, [11]), also known as the

e
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*scoring® method, doesn't help in this case, owing to the .dif.f.‘.* culty in
obtaining the expectations of the second partial der!vatives of L. Again,
the plausibility of Marits' scheme should be emphasiged.

Many results have been obtained concerning the asymptotic normality
and agymptotic efficiency of maximum likelihood estimators. In each case
the parametric family of probability distributions is subject to certain
regularity conditions. The density of (X,2) is f(x,2). We siall not dwell
here at any length on the regularity conditions, but shall mere.v remark
that the regularity conditions given by Cramer (Chap. 33.3, [J]) may be
easily verified, since f(x,0) and f(x,1) are both integrals of bivariate nor-
mal densities. Consequently, ‘3’;‘" will be asympto*alcall;" normal, aod
asymptotically efficient estimators for w and f respectively. Asymptotic
variances of the maximum likelihood estimators may be found by a: inversion
of the inverse nmetrix without actually solving the likelihood equatiouns.

We now use this technique.

Zheoreg I.
A
The asymptotic varianc: of f is given by

'[te(x.w,f)dx/

™,

f B(an’f)dx J

-t

B(xsp) = A(x) (2 “’i‘-'-) (- %“-:ﬁr)

(4.6) V(Fjw’f)“%- (1—#’)3. fﬂg(x,%f)dx -~

wvhere

Rroof:
logl = é:llog {’1 § (x,,%) 1‘»(1-:1) 7(11.“) } .

Ve will need the quantities

<—E.'é) 3:3(’) a = )
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Letting 52 refer to any of the three second order partisl operators, we

have the fundamental relation

(4.7) E{bzlos Lf = nnEo{Szlos? (x0)} +npt, {5%10g £(X,9)},

vhere Eo means expectation with respect to the conditional density of X

Ziven Y < w, and El means expectation with respect to the conditional

density of X given Y ¢ W, The conditional densities are

W
(4.8) Ylxiy <w) = 1 :{;Y"(x,y)dy - Lyxa
-
(4-9) Y(xl!iw) = '-]"' j‘f‘(x,y)dy - _l_g(x.w)'
P o P

2
For each of the possible operators & the calculation of (4.7) pro-

cedes in about the sume way. As &sn illustration, we shull compute

2 Berk .

For a random variable U with density h(u;e), it is well known that
2)0g h(U;6 1 \2 /9n(u;e) ¥ ’;
(w10) 52RO g - v {(ri)” (BT ]

provided the expectations exist and differentiation twice under the expec-

tation sign is permissible. It is easily seen that

(4.12) 2L o Y (x). .

Consider the first term in the right member of (4.7). From the definition
of E, end (4.8), together with (4.10), we have the result

kAl
(4.12)  nqBy {ﬁngi.&&ﬂ} 2 -n.jo%}]_z_dx.

In a similar manner we shovw that
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(4+13) npsliv_z}sﬁ.gﬁ).j - n-L 36 dx.

Hence, combining (4.12) and (4.13), ve get

2 e 2
win siegi} - oo NRLGELS o

Using the relations,
Wix9J2 = {»\(::)}2{)\(21:33)}2 -1-_}:2- ,

A(x) f A(Y)dYo

S(xa“’) =
W
e
7xw) = A My)ey,
we have from (4.l4) and the definition of g(x,4f)
+30
32 -
{4.15) E {—Sl"fg—x‘} = '(—1%’;15' -ig(xs“’)f’)dx

similerly, .

0
(4.16) . E {2%?5-2}———_ Hn:ﬁ? h_[o(x-pw)z g(x,4 £) dx,
%0217 fm -

(4.17) E {.—3—;’93?3 (-1-.%’:2-’-, M (x-w)  glx,4p)ax.
Forming the 2 x 2 information matrix

)2 Pron L

v Sl ~

32 o2 '

and observing that ,,A_I is non-vanishing because of the Schwars inequality,

we finally obtain




! i

Q(?Iw.r) = 2t = .(..1::.[‘3)3 { fngdx “""'"‘m""j

y
(4.18) #o0

U@lw’f) ‘-);i = .‘-lgél{ f:&: - _{:;é:.dx.f_} -

- -1
where )\1} is the ijth element of the inverse matrix /\. » .which proves
Theorem I . Expressions (4.18) coincide with the previously mentioned
results of Maritsz.,

5. The Utility of x*
We shall nov present a series of results concerning r*, which will be
followed by a general discussion of its wvalue.
A little later we will need E(XZ). Since, it is not difficult to

obtain, we will give the expression for the general moment °(K = E(xXz).

Theorem Ii: i

3 Fa 42

e
vhere a; is the ¥ moment of the random variable ..y{0,1).

Broofs Using the definition of E, and (4.9), e obtein .

. M
B(xEz) o= B, (2K) = ( j K¢ (x,y)dydx.
-0 W
Make the transformation t = (x—fy) y/l-f-z. The above then reduces to

aa 2 el
[_f(t\}l-fzfyr)x L. ¥ 1. dydt.

-0 W

*
hde)




Using a binomial axpansion and integrating with respect to t, we have
Theorem II. The integrals contained in Theorem II may be evaluated by a

recursion relation. Let

y2
b)) = f%# =7 dy.

Then,

byl) = (V1) by, @) + b @),

We now easily arrive at

(5.1) b(«) = p@), b)) = A(w),
whence
(5.2) o, = pl), 4 = PAW), 9, = PE) ~WA) P2,

The relation detween P(X,Y) and p{X,2) is given by
Ihm.ub e(x,2) = P(X,Y) A@)
/m

Proofi Let EX = 4 = 0 and V(X)* o2 = 1. Then,

(%2 = (=) V2] = (m2) G0t Fon 5.2, @) = p AW,
which proves the theorem.,

It <follows fron the original definition of biserial cecrrelation, as given
by Pearson [6], that s consistent, This fact is also an immediate con-

sequence of relation (3.2) between r* and r1 r—>P(X,2) in probability

as n —>w, Thus,

o 2 i
= Py -2 ’ X2
bl -—Z-—"T) {n ) (Zi Z) j = { in probability

and hencs by Theorem III, r" —=O(X,f) 4in provability.

LF e D TT——— -

i
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With respect to the magnitude of r¥, it is well known that [r*/ can
be greater than 1, Something of the nature of this phenonenon can be under- i
stood by looking at r. In order to provs a result concerning the magnitude of
of r*, we shall need a result from reference [9).
Theorep IV (Lemma 2 of [9]):
p(x) q(x) 2 ¥~ A(x), (-o<x « @)
Now we have
Iheoren ¥:
* T
T 2T
Proofs  Rewriting (3.2) es
i
ve have, in view of the definition of T,
r¥mr MMM .
AT ‘
Theorem IV applies for any T, so Theorem V ig proved. As a consequence of
Theorem V, we see that -

b ol 3_1 according as r 7 ‘};:
<7

Asymptotic normality of r*, which will be needed later in this section

is a trivial consequence of a theorem of Cramér.

. o WIS < oL At P—
~
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Ineoren Wit v N(PV(*usp)). |

m: In expression (3.2) the term A(T) is seen to be a contimous function !

of 2. Thus, r* is a continuous function of the sample means 1, -Z-, fi, °x'z_..

Applying Cramér's theorem (p. 366 of [1]), we have asymptotic normality with

the asymptotic variance (3.4) calculated by Soper [8]. .

We shall now present two results which are more important than those just

preceding. They concern the asymptotic, or large-sample, efficiency of ™.
[ ]

Theorem VII: r* is an asymptotically most efficient estimator of (° when
f = 0.

Proof: In view of Theorem VI on asymptotic normality, we have a right to
inquire about the asymptotic efficiency of ™, which will. be denoted by

Hlue) = VWL |
e ) f

It may be seen from Theorem I, (4.6), that

(5.3) VPlw,0) = ) o
: ® n [Aw)]?

*

Now, from (3.4) we cbserve that (5.3) coincides with V(r*|w,0). The con-

clusion follows from the definition of an asymptotically most efficient esti-

mator.
Theorem r* is an asymptotically least efficient estimator of P -when
,rl"’lo * *

Proofs An application of Theorem IV shows that
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Pl -%5) < & .

Hence, recalling ths definition *gf g(xy2,f) in Theorem I, we see that

all integralis of the form f K g(x,0,f)dx exist. Schwarz' inequality
shows that V (. 2 Iw,f) is such that the terms in braces is non--vanishing.
Thua, V(f}‘l))f) - 0 as 1P|=>1. From the fact V(r¥uw,p) .)T%'

as 1P\=>1, ve conclude thatg(l"'lw,f) -» 0.

The special case & =0 has interesting features which will appesr
in Theorems X and JI. First we shell need another result from reference[9].

Iheoren IX (Lexma 1 of [9])

{2-2p(x)} A (x) - xp(x)a(x) 2 0, x 2 0.
Iheoren X: . .
¢ ) The asymptbtic variance of r™ has its minirum for each f at =90, '
‘Proof: We must show ®
: | W |uf) L T 0,p)

for each £ . In view of symmetry, it will be sufficient to show this for

W-20. Let,
o @.2.2.( %) -2 .:.%E.(‘f)}. ' B@) = P.(_J.SL%‘”
(A oy " e SR

S g b Tt a7

glw) = {1-2p{)} X w) -,wp(w)q(w).: be) = pis)a@) - T )}2 /2.

From this point until the end of the proof, we shall omit @ whenever it.

apéeara as an argument of any function. ‘From reference (9] we have

. ) - 1

e e g cgn e i . B e et o i =

e ) A £



‘Substituting the volve of 29(1-q) obtained froa the first equation in (5.5),

[ —— >

RN " oA - RN - W«.W:;nm
20 ’

§'=2)2 - pa, g'= % ul - (2020 , §(0) = g(®) = 0, g*(0)> O,

n' m)\(1-29) + TwA2, h%a A2(r-2-2Mw2) -w(1-29)A,
h(0) == h(o0) = n'(0) =0, h* (0) ) O.

Accordingly, we have A= -wgA™2, B= h\<2 4 7/2, with A £ 0,

B 2 ¥/2, btoth equalities holding at «w=0, -Tne relation V(r*jw,) 2
V(r*[0,0) for all £ may be writtenP?h ¢ s 37/2 for all (° . Since
A €0, tuis last expression is impliec by 4 ¢ & = T/, which in tum

1s equivalent to h » wg., Thus, we must show k = 1 =Wg 2 .

k' = 2wg(leq) = 2(Rq=LIA sw(m-2) A2,
(544) o= 2q(l-q) = A2 {6 -7 +@? (21 - 2,
©x{0) = k() = k'(0) = 0, k" (O) = i = 347 > u

We shall ghov that there exists no y such such k‘(y; = 0, k{y} < 0.

‘Suppose such a y does exist. Then,

(5.5) 2(2g-1) A = 2yq(1l-q) + (w=2)y A%,
A=) (14?) - mAY2 - y(20-0) < 0.

Substituting the right member of the first expression into the second, we
have 2q(1-q) < A3{m4 (T2) ¥}, Thus, K* (y)< A2{2w-6 -r-2)y%}.

A negative maximm must, from (5.4), be followed by a negative minimunm,
Hence, from the above relation in k%"(y), there exist no extrema which
oxceed { (27-6)/(r-2)}8. Assuning there is a negative extremum of k, then
there nust be a negative minimum in (6,1). Let y be this minimum point.
Then k*(y) > 0, or from (5.4), 2q(1~q) <)? {6-11= law-4) y2}>o0.

ve reach (2g=1) - y)[z e (W=2) 32] 2 0.
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The left member vanishes at y =0 and has a nogativ.e derivative for 0 <& yz £1.
Therefore, there is no negative minimum in (0,1), and from the previcus
argument k 2> 0, vwhich completes the proof.

Since for any fixed £, r* is a better estimate whem w=0, it will be
useful to have something simpler in the way of an asymptotic distribution of
r* than that contained in Theorem VI. We are therefore led to

iheoreg XI:
Vhen «w =0, we have to a close approximation
tanp=l 25 tani~l 28 , 2,
/_5_ ~J{( 4 B_ > w

Broofs
Vetoe) = 3437+ ) = 2(G-pA° - 25D,

Dropping the last term and solving the equation

1
G-

g'(x) =

ve have g(x) =(2//5) tamh~l (2x//5). It is known that
/f'ri"{g(r*) - g(f’)} ~X(0,1),

80 the theorem is proved.

Discussion of Results Concerning r*

In looking over Theorems V, VI, VII, VIII, X, and XI, several facts
stand out. Firet, even though r* is consistent and asymptotically normal,
it is still inadequate for estimating f because of its possible magnitude
and its lack of large sample efficiency for large values of [fl. In the
case of testing they hypothesis H: P=f6 the first defect is actof so
much consequence, Even in a problem of estimation, one can alweys operate
under the rule: When |r*| <1 estimate P by r*, when r* 3 1 estimate p= 1,
and vhen ™< -1 estimate L= -1. The gross defect is lack of efficiency.

SRR & uit. e —————EETERG L T
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~ In practiocally all applicationzs it is of more interest to detect large

values of lP' than small values. In just such cases r is a "worst® esti-
mator. On the other hand, again speaking in large sample terms, when Pa 0,
1* is a "best" estimator. Hence, if we base a test of H1 =, on r*, good

results should be achieved when |.! 1s small. It is then recommended

that r™ be used for one and only one purpose, to test H: P ©P. when | Po !
is small, If in addition the assumption W = 0 is tenable, then the vari-
ance stabilizing transformation of Theorem XI mey be used, calculations being
performed with Table VB of Fisher (p.210, [l.]). In such a case advantages
of the type iiscussed by Fisher (pp. 197-204, [4]) will accrue. /o o

is given in fable I.

In the case of the problen of estimating the value of a particular test
iten for predicting student performance, W # 0 would occur when the question {
is of such difficulty that the average student would have probability .50
of answering it correctly. We could then use ™ and tne variance stabilizing
transformation of Theorem XI to test the null hypothesis Hs P = 0, which is
the hypothesis that the question doesn't add anything to the predictive wvalue !
of the test. The acceptaace of hypothesis H doesn't mean, of course, that
the question should be omitted. It is well known that such questions have
at times a useful purpose. Note that in view of the above discussion it
would be wrong to use r* to obtain confidence limits for @ + Also note that
according to Theorem X a question for which w = (0 is a desirable one to
have.

6. Selutdon of the Likellhood Equations
In vhat follows all sumations will be over the domain 1 = 1,2,...,0.

From (4.2) it may be seen that the likelihood equations are

> { (1-33)8 7(x1,0) + 8385 (x3, @) }
(1-3y) (% ®) » 3 & (x,0)

(6.1)




vhers S refers to differentiation with respect to w or P - liecall

from (4.11) that,

(620 W o iy, , 31“” = - Wiy,

ow
Also,
(6.3) arg(xi,w) _ W(H.wnﬁ TPw)
of - (1-p<)
AS(X! ) - ‘V(X}Jw)(ﬁ‘f"")
Y (1-£?)

By the use of (6.2) and (6.3) equations (6.1) cen be written as

2 (xg=pw)(2s4-1) ¢i(2zi-1) (::':, )} = 0,
(6.4)
Z (23,-1)) ¢ {(2s4-1) (/-“%3)} =o.
Now introduce the notation
(6.5) § = 25-1, ¥= (w-exi)(l.pz)-i , @ -*(51“1) ,

Ay =¢1(¢1" 8 4.

Rewriting (6.4) again, in the new notation, we have

(6.6) 25141 =0, Z 5;.81¢i'0-

23
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Easy differentiation gives 75/(1) = C/’(x){ ¢(x) - x}. Nowton's
methed in two variables gives the following equatione in A« and 4/ ,
where 4® =w.w:, AP=PL-f, V) and £; being initial guesses:

A Prw, S Ay =3 A -
(Zﬁs)“‘“ 1 (-—J‘—%:;-);—Z—iﬂ)“f =-1 &8,

A % AT MY~ A,x"l _
(z 1..‘012 ) aw + ( (l-Plz)% )Af’— 251’1¢1 .

(6.7)

Let /1 be the determinant of the coefficients. The method of solution
will then be the following:

Method of Solution
i) Compute (™, r™) from the sample () zi'), 1 = 1,2,.00,n,
wvhere r* is tte sample biserial correlation coefficient and w * is the
solution of the equation p(w) = %. Now, let «, == W and
r# when || < 1
f, = +90 when ™ 2 1
-.90 when * £ -1,

11) Compute sj, 7‘1, ¢1, 51¢1, Sixi¢1, Ai’ ‘1!1, Aixiz for i = l,2,..,n,

where 51, Yy» #;s A, are defined in (6.5), and Table II is used to

obtain numerical vslues of the ¢ e
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ii1) Evaluate the three determinants
2o Ay Py ey =L A
A= ey 2
L.oAX P Lax “T A (1"3012)
A | 11 i1 +~— "1
X &8 Al - ax
A W = 1

-5 ; - v 2
o4 Ae LAx -loax

) A - 515‘1
bp = . ___l_____g .
L.Ax - sx 4 a(1-p3)

iv) Obtain (w,()) from (8w,0p) and ( wl’ (ol), and repeat
the process using &« = Woy P =P in place of @, and p.

The rule given in 1) is somewhat arbitrary, but is believed to be a
good rule of thumb, The longest stage in the scheme outlined above is the
determination of %, 1 =1,2,...,n, from Table II.

We shall novw )resent an illustration of the method. In order to have
a good vantage point for observing the way the calculations run, ve select
a random sample from §3.4/(0,0;1,131//2). A table of randam numbers from
such a population is not available directly, but can be constructed from a
table of pandom mmbers from Mo,l) as follows: Let
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U=AN0,1), ve X,1), =.5.

novw, let

xX=u |, x:ﬂ#.

Now dichotomise ¥ by introducing the Z variable:

The computing scheme for 20 pairs of observations followss
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A second iteration resulted in Wy = 0,251, F 3= 0.489. Since f;‘
remained unchanged in the third place, the results were not included. Recall
that the true value of [ 1s.707. On the basis of our sample of 20,

? = o489 is the best we can do. However, by using the iterative scheme
instead of r* ve removed 27% of the error.

7. Summary

The problem of biserial correlaiion is examined. An attempt i1s made
to touch upon all aspects of the problem, vithout sacrificing mathematical
rigor, and to describe the pertinent literature in its proper setting.
Particular attention is paid to the use of maximum likelihood, and to the
asyaptotic efficiency of the sample biserial correlation coefficient.
Results may be sumnarised as follows.

(1) The likelihood equations for «w , the point of dichotomy, and £,
the population correlation coefficient, are obtained.

A method for their solution is described and illustrated by an example.
Detailed calculations are given.

(2) Asymptotic variances are derived for the maximum likelihood esti-
mators, ) and {;‘ s and are found to coincide with expressions given by
Marits [5].

(3) The sample biserial correlation coefficient (biserial r) is shown
to be appropriate and very useful for certain problems in tosting hypotheses,
but essentially worthless in other situations., Several resultes are given o
in reference to the limiting distribution and asymptotic efficiency of this
coefficient. |

(4) Tables are given for the asymptotic standard deviation of the
sample biserial correlation coefficient and for Mills' ratio, the latter

being useful in solving the likelihood equations.
(5) Practical suggestions are offered, for application of the results
of the paper, vwherever possible.
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TABLE I
The Asymptotic Standard Deviation of r* (biserial r)
as a Function of p o.ndf’.
All values must be divided by /¥~

p or 1-p
05 ] 10| 15| R0 | o25 | 30 | 35| 440 | <45 | .50

0 | 4e466|2.922|2.345| 2.041|1.857|1.737|2.658|1.608|2.. 580 1.57
<10 | 2.104{1.699|1.521] 1.419{1.353|1.308]1.278|1.258|1.247|1.243
«20 | 2.077|1.668{ 1491 1.389] 1.323|1.279|1.248|1.228{1.217]1.213
30 | 2.033{ 1,626 1.440( 1.339{ 1.273/1.229/1.198] 1,179/ 1.167|1.163
* 40 [ 1.971]1.543 1.37011.269 1.203{1.1591.128{1.109{1.097/1.093
.50 | 1.893]1.449 1.279[1.179 1.114{1.069|1.038/1.019{1.008{ 1,004
«60 | 1.799]1.333]1.167] 1.069] 1.004]0.960|0.9300.910| 0.898] 0.894
70 | 1.691 1,194} 1.034| 0.99] 0.875|0.831 | 0.801 | 0. 781| 0. 769 0. 766
.80 | 1.569]1.031]0.881{ 0.799| 0.727{0.683|0.653| 0.632| 0.620] 0,626
<90 (1.438|0.842|0.705| 0,619 0.559[0.517|0.486|0.465| 0.453] 0.449
1.00 |1.302|0.616{0.503{ 0.429] 0.3740.335/0.304|0.283{ 0.270( 0. 266
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TABLE I1I
Mills' Ratdol®?

~X - $(x) -x ¢ (x)
<00 79788 «40 .56188
001 lﬁlsz 041 - 55“9
<02 «78519 42 55112
+03 .T7887 43 54578
<04 JT7259 VA « 54047
.05 07“32 045 L] 53520
06 «'76008 46 52993
<07 «75387 o477 52471
.08 74767 «48 « 51948
09 «T4148 49 51431
<10 73532 50 « 50917
1l «'12920 51 « 50404
12 «T72309 52 «49893
«13 +71701 53 49387
old « 71094 154 .48883
¢ . o15 «TO491 55 «48380
16 «69890 56 47883
* «17 «69291 «57 47386
18 68694 58 46893

.29 .680%9 > -46402 |
«20 67507 60 45914
021 .6&17 .61 .45‘”
022 +66331 .62 «AA947
23 65747 .63 . ohhhb8
24 65165 64 43992

» 25 0&58‘ 065 “3’18 }
«26 64006 +«66 43047
«27 63431 67 42580
28 . .68 42114
29 62289 9 241652

. «30 61723 70 «41192 ‘
* 031 .61158 .71 '40736
32 «60594 o TR «40282
.33 .60035 73 .39832

34 -S94T8 % -39383 -
35 - 58923 75 «3939
036 e 58371 ) .76 om%
e 37 5822 77 ' «38056
<38 5T2T4 .78 37621
«39 «56731 T «37186
-
L. e 2
. 1 Mills' ratios ¢ (x) = £ix <
. z
v .

2 This table is reproduced with the kind permission of
Professor Z. W. Birnbaum of the Laboratory of Statistical
Research, University of Vashingtom,




. 8]
.82
.83
.84
85
.86
.88
-89

<90
91
92
«93
94
<95
296
97
.98
9

1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

1.10
l.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19

1.20
1.21
l.22
1.23
1.2
1,25
1.26
1.27
1.28
1.29

¢(13

«36756
36329
-35904
35481
35062
- 34646

.33823
33416
. 33012

«32611
32213
.31818
«31425
.31035
+30649
30264,
.29884
«29506
29132

.28760
~28391
~28025
27662
27303
- 26045
26591
- 26240
«25892
«R5547

25204
24866
24529
24196

.R3538
.23213
.22891
2572
22256

w1944,

L 2163‘
«21326
«21023
-20721
- 20423

.19834
.19545
.19257

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39

L4
1.41
le42
1.43
1.410
L.45
1.46
1.47

.49

1.50
1.5
1,52
Le53
1.54
Le55
1.56
1.57

. 1.59

P(x)

18974
.18692
138414
.18138
»17866
«17595
17328

A7064

16544

.16288
+16035
«15784
«1553¢€
«15292
«15050
«14810
<1457,
«14340
.14108

.13879
+13653
«13429
+13208
«12991
12775
12562
«12351
«12143
.11938

11735
«11534
+11.338
<1114
«10949
«10758
.10572
«10386
«10202
«10022

09844
.09668
+09495
«09323
«09155
08988
.08824
-08661
08502
«08344

a




1.80
1.8
1,82
1.83
1.84
1.85
1.86
1.87
1.88
1.89

1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99

2,00
2.01
2,02
2.03
2,04
2.05
2,06
2,07
2,08
2.09

2.10
2,11
2.12
2,13
2.14
2.15
2,16
2,17
2.18
2.19

2,20
2.21
2,22
2.23
2:.24
2.25
2.26
2.27
2.28
2,29

«06240
06115
+03994
05873
«05755
+05639

05525
»05412
05301
05192
+05085
<0499

04876

04774
<0467,
04575

04478
04383
04290
«04198
04107
«04).8
03932
«03846
.03761
03678

+03597
.03518
<0349
03362
.03287
+03213
03140
03070
«02999
02930
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2,49

2,50
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2,53
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«01196
+01165
01134
+01104
+01075

+01046
.01017
+00990
«00964
+00938
«00912

00863
.00829
+00816
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X
.00
.01
.02
.03
04
.05
006
.07
.08
.09

.10
lll
.12
13
14
15
.16
A7
.18
19

21

22

23

24

25

+26

o7

: 28

» 29

o .30
.31
.32
.33
. 34
2 35
.36
.38
<39

o40
. .4_1
ol 42
- '/.3
by
o45
46
o477
48
49

P(x)
. 79788
. 80426
.61066
. 81708
.8235)
. 82998
83646
. 84298
84950
.85605

. 86262
. 86923
. 87582

88246 .

. 88909
. 89577
90246
90916
91589
.92266

92941
93621
-94300
94984
95668
96357
+97043
97734
98427
.99119

.99816
1.00516
1.01215
1.0192
1.0262
1.0333
1.0404
1.0474
1.0545
1.0616

1.0687
1.0760
1.0831
1.0903
1.0975
1.1047
1.11.20
1.1193
1.1265
1.1338

MRS omunaty- i AL YU e n e b i sk e < TR 5 TR S o

X

51
52
33
54
55
.56
057
.58

.59

.60

.62
.63

.67

«73
T

91
92
93
94
.95
.96
97
.98
99

P(x)
1.1410
1.1484
1.1557
1.1631
1.1704
1.179
1,185,
1.1926
1.2000
1.2076

1.2151
1.2225
1.2300
1.2375
1.2450
1.2525
1.2601
1,26m7
1.2753
1.2829

1.2905
1.2982
1.3058
1.3134
lo3212
1,3287
1.3364
1.3441
1,3519
1.3596

1.3674
1.3751
1.3829
1.3906
1.3%86
1.4063
1.4142
1.4221
1.1.293
1.4378

1.4457
1.4535
1.4613
1.4693
1.4773
1.4852
1.4932
1.5013
lo sz
1.5170

*
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P(x)
2.373%0
2.38.5
2.3912
2.3992

2.4178
2,4266
2.4349

2. 4528

2.4624

2.470
2.4808
2.4882
2,4975

2,5063

2,515
2.5253
2,539
2. 5426

2.5517
2. 5608
2. 5694
2.5786
2,5867
2.5975

2, 6055

2,6157
2,6240
2,6323

2.6427
2,6511
2,6596

2.6”81
2.6860
2.6947
2.7064
2.N22
2,728

2.7307
2,7390
2.7503
2.7586
2.7l
2,7786
2,7855
2.4
2.8035
2.8121
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2,84

2

8

()

2.8233

2.8297. .

2.8506
2,8612

.+ 2.8662

2.8794
2.8902
2.8969
2.9044

2.9138
2.9206
2.,9300
2.9412
2.,9472
2,9630
2.9665
2.9815
2.9895
3.0003

3.0030
3.0175
3.0276
3.0312
3.0460
3.0506
3.0618
3.075%0
3.0769
3.0836

3.0941
3.1046
3.1162
3.1201

3.1368
3.1506
3.1656
3.1706
3.1766

3.1817
3.1939
3.2113
3.2248
3.2321
3.2331
342404
3.2552
3.272
3.2873
3.289
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